=

Convolutional Neural Networks
for Particle Tracking

Steve Farrell
for the HEP.TrkX project

May 8, 2017
DS@HEP, FNAL

—\l EEEEEEEEEEEEEEEEEEEEE =% Caltech F rmll
AAAAAAAAAAAAAAAAAAAAAAAAAA q P ' 3
,



Particle tracking at the LHC

* An Iinteresting and challenging
pattern recognition problem

* A very important piece of event
reconstruction!

Up to 200 interactions per bunch crossing Thousands of charge particle tracks



ATLAS and CMS tracking detectors
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 Cylindrical detectors composed of pixel, strip, or TRT
layers to detect passage of charged particles

* Both undergoing evolution for HL-LHC
* O(100M) readout channels!


http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08004
http://atlas.cern/discover/detector/inner-detector

The situation today

e Current tracking algorithms have been used very
successfully in HEP/LHC experiments

* Good efficiency and modeling with acceptable throughput/
latency

* However, they don’t scale so well to HL-LHC conditions

» Thousands of charged particles, O(10°) 3D spacepoints,
while algorithms scale worse than quadratic

* Thus, it's worthwhile to try and think “outside the box”; i.e.,
consider Deep Learning algorithms

* Relatively unexplored area of research

* Might be able to reduce computational cost or at least
increase parallelization

* Might see major improvements



Some deep learning inspirations

Image segmentation

Image captioning

Vision Language
Deep CNN Generating
RNN
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A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.
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https://arxiv.org/abs/1604.02135
https://arxiv.org/abs/1604.03635

Current algorithmic approach (ATLAS, CMS)

* Divide the problem into sequential steps
1. Cluster hits into 3D spacepoints
2. Build triplet “seeds”

3. Build tracks with combinatorial
Kalman Filter

4. Resolve ambiguities and fit tracks
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track following -~

Credit: Andy Salzburger

Alternative approaches include Hough transform, Cellular Automaton, RANSAC, etc. |



Where to begin?

* What could ML be applied to?
* hit clustering
* seed finding
* single-track hit assignment
» multiple-track “clustering” Many options!
e track fitting
* end to end pixels to tracks

* How to represent the inputs, outputs (and
intermediates)?

» discrete vs. continuous space
* hit assignments vs. physics quantities
* engineered vs. learned representations



Various challenges

] CMS “tilted” proposal for HL-LHC
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» Detector inefficiencies, material effects
e Defining good cost functions
 Particularly for multi-track models
* How to quantify reco efficiency in a differentiable way?
 Experimental constraints on performance, interpretability
A big deal, for obvious reasons
 Time and space complexity constraints
* Otherwise, what's the point?



Detector images

* Neutrino experiments may have nice “image” detectors, but it's a bit

harder with LHC detectors!
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Convolutional networks as track finders

Input track image Stub features Segment features
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Stub filters

m W hg Convolutions and pooling —»

e Convolutional filters can be thought of as track pattern matchers

« Early layers look for track stubs

 Later layers connect stubs together to build tracks

Higher level
features
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* Learned representations are in reality optimized for the data => may be abstract
and more compact than brute force pattern bank

 The learned features can be used in a variety of ways

» Extract out track parameters

* Project back to detector image and classify hits
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What can CNNs learn about tracks?

* Convolutional auto-encoder: can it learn a smaller-dimensional
representation that allows it to fully reconstruct its inputs?

Input Model prediction
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https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

What can CNNs learn about tracks?

* Track parameter estimation: can it predict the tracks’ parameters?

« Some inspiration from Hough Transform: binned parameter space with
peaks at the correct values

* By converting regression problem into discrete classification problem, can

handle variable number of tracks with relatively simple CNN architecture
Target Prediction
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* Might be an interesting approach, but it has limitations
* doesn’'t map params onto the hits like Hough

* precision comes at cost of dimensionality
https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d learning.ipynb
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https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

Ongoing HEP.TrkX studies

 About the project
* https://heptrkx.github.io/
* Pilot project funded by DOE ASCR and COMP HEP
» Part of HEP CCE

* People:

LBL: Me, Mayur Mudigonda, Prabhat, Paolo
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng
FNAL: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

 Exploratory work on toy datasets

* Hit classification for seeded tracks with LSTMs and CNNs
* End-to-end track parameter estimation with CNN + LSTM
 and some others
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https://heptrkx.github.io/

Hit classification with LSTMs in 2D

Model prediction
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https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D.ipynb
https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D_varlayer.ipynb

Hit classification with CNNs in 2D

Trained with 10 conv layers, no down-sampling

Input Model prediction

CNNs can also extrapolate

and find tracks

Extrapolation reach may be
limited without
downsampling
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9-layer convolutional “autoencoder”
Input Model prediction
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https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/cnn_toy2D.ipynb

Hit classification with CNNs in 3D

Projected input

3 avg bkg tracks, 1% noise

pixel y

25
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4
detecto, ai, o

4
detector layer

« Basic CNN model with 10 layers and 3x3x3 filters
» Gives nice clean, precise predictions
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Architecture comparisons

Pixel prediction accuracy

Hit Classification accuracy
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Uses best pixel w. = Uses best hit pixel
0.8 0.8 h \ ~
T —
0.6 0.6
> >
: @
2 “~ ‘ g
g ~ g
0.4 » ~— 0.4
~— BILSTM S BILSTM
== ConvAE T ConvAE
»—= ConvNN ) S ConvNN
021+ LSTM = %211+ LSTM
=+ DeeplLSTM DeeplLSTM
+ NL-LSTM + NL-LSTM
000 20 40 60 80 100 0.0 20 40 60 80 100

Average number of background tracks

Average number of background tracks

* Both LSTMs and CNNs do well at classifying hits for reasonable
occupancy

* Models’ performance degrades with increasing track multiplicity
 CNNs seem to scale well to high track multiplicity



[Work of Dustin Anderson]
Track parameter estimation

» Use a basic CNN with downsampling
and regression head to estimate a
track’s parameters

» could be an auxiliary target to guide
training, or potentially useful as the
final output of tracking!

» |dentifying straight line params in heavy
noise:

Input Model prediction
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[Work of Dustin Anderson]

Extending to variable number of tracks

« Attach an LSTM to a CNN to emit parameters for a variable number of tracks!
 The LSTM generates the sequence of parameters *

* Requires an ordering the model can learn

» Should provide some kind of stopping criteria

Input Model prediction
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[Work of Dustin Anderson]
Estimating uncertainties on parameters

* Train the model to also estimate the uncertainties by adding additional targets:

Dense || LSTM Slopes and Intercepts
= Conv. Layers

Dense][ LSTM

* Train using a log gaussian likelihood loss:

Cov. Matrix Parameters

L(z,y) = log|Z| + (y — f(x))" =7 (y — f(x))

 and voila!

Input

Model prediction

Pixel

Layer
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Visualizing CNN features

[Work of Dustin Anderson]

* We can visualize what the CNN is learning by finding images which maximize

a particular filter’s activation

* Here are the 2nd layer filters of the CNN+LSTM track parameter model
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Conclusion

* There is some hope that deep learning techniques could be useful for particle
tracking

* Powerful non-linear modeling capabilities
* Learned representations > engineered features
* Easy parallelization

* |t's not yet known if computer vision techniques like CNNs offer the most
promise, but they have some nice features

* They can learn useful things about the data and seem versatile
* Some successes seen with highly simple toy datasets

* Where do we go from here?
* Try to apply these ideas to realistically complex data

* Continue thinking up new approaches

22



Backup
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3D toy detector data

= 3 // Att LRSS -~
NN

- e

detgctor la);er

3

 Starting to get a little more “realistic”

* 10 detector planes, 32x32 pixels each

* Number of background tracks sampled from Poisson

 With/without random noise hits

* Flatten each plane for the LSTM models

* Adapting my existing models to this data is mostly straightforward
* Use 3D convolution

24



What can CNNs learn about tracks?

* Track counting: can it predict how many tracks are in an event?

* can be framed as a regression problem, but here | framed it as a
classification problem

' 0 Prediction _

[ target
B prediction

0.8

0.6

04

. 1

0 2 4 ) 8 10 12 14 16
Number of tracks

* seemingly not a very difficult task for a deep NN
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https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

Next-layer LSTM prediction

Projected input 3 avg bkg tracks, 1% noise

pixel y

—
o

detector layer detector layer

* Next-layer model gives predictions that are less precise but smoother and more accurate

* Mostly unaffected by nearby stray hits
 With this detector occupancy, they are the best at classifying hits
 but this may change with higher occupancy
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The HEP.TrkX project

* A 1-year pilot project to develop ML algorithms for HEP tracking
* Funded by DOE ASCR and COMP HEP, part of HEP CCE
* Collaboration between ATLAS, CMS, LAr folks from LBL, Caltech, and FNAL

LBL.: Me, Mayur Mudigonda, Prabhat, Paolo
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng
FNAL: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

e Some goals
* Explore the broad space of ideas on simplified tracking problems
* Develop a toolkit of promising ideas
* ideas that work (physics constraints)
* ideas that scale (computing constraints)
* The work is in an exploratory phase
 Testing ideas in a breadth-first fashion
* Very much a work-in-progress
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Other ideas - data transforms

* Hough Transform breaks down in LHC-like data due to process noise
and high occupancy

H
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/ i
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parameter space

» But what if a deep network could /earn a mapping to group together
hits that belong to the same track?

* You don’t need to impose a specific representation
* The model could take event context into account
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Other ideas - graph convolutions

« Graph convolutions operate on graph-structured data, taking into account
distance metrics

* https://tkipf.qithub.io/graph-convolutional-networks/

Hdden layer Hidden layer

input e v Output
° °

* Connections between ~plausible hits on detector layers can form the graph
* Handles sparsity naturally
» Scales naturally with occupancy

| haven’t dedicated much thought to this yet, but it may be versatile enough to
do the kinds of things I've already demonstrated

29


https://tkipf.github.io/graph-convolutional-networks/

ATLAS tracking in dense environments

hits in the pixel and | ambiguity solving tracks!
strip detectors
high resolution
* track fit

(use NN for cluster positions)

T recover track

>
25,
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build 3-point seeds

v

filter the seeds order tracks
‘ by score

candidate
(NN to identify
merged clusters)

_ _ reject track
combinatorial

Kalman filter

v

track
candidates

assign a
score per

candidate

clusters, holes, clusters can be shared by < 2 tracks;
1% log(pr) tracks can have < 2 shared clusters

Stolen from Ben Nachman’s TPM presentation:

https://indico.physics.Ibl.gov/indico/event/433/ 30



https://indico.physics.lbl.gov/indico/event/433/

Model architectures - ConvNN

Layer (type) Output Shape Param # Connected to

input 1 (Inputiayer)  (Neme, 10, 32, 32) o
reshape 1 (Reshape) (None, 1, 10, 32, 32) 0 input 1[0][0]
convolution3d 1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape 1[0][0]
convolution3d 2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 1[0][0]
convolution3d 3 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 2[0][0]
convolution3d 4 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 3[0][0]
convolution3d 5 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 4[0][0]
convolution3d 6 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 5[0][0]
convolution3d 7 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 6[0][0]
convolution3d 8 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 7[0][0]
convolution3d 9 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 8[0][0]
convolution3d 10 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 9[0][0]
convolution3d 11 (Convolution3D) (None, 1, 10, 32, 32) 217 convolution3d 10[0][0]
reshape 2 (Reshape) (None, 10, 1024) 0 convolution3d 11[0][0]
timedistributed 1 (TimeDistribute(None, 10, 1024) 0 reshape 2[0][0]




Model architectures - Conv autoencoder

Layer (type) Output Shape Param # Connected to
reshape 1 (Reshape) (None, 1, 10, 32, 32) 0 input 1[0][0]
convolution3d 1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape 1[0]1[0]
convolution3d 2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 1[0][0]
maxpooling3d 1 (MaxPooling3D) (None, 8, 10, 16, 16) O convolution3d 2[0][0]
dropout 1 (Dropout) (None, 8, 10, 16, 16) O maxpooling3d 1[0][0]
convolution3d 3 (Convolution3D) (None, 16, 10, 16, 16)3472 dropout 1[0][0]
convolution3d 4 (Convolution3D) (None, 16, 10, 16, 16)6928 convolution3d 3[0][0]
maxpooling3d 2 (MaxPooling3D) (None, 16, 10, 8, 8) O convolution3d 4[0][0]
dropout 2 (Dropout) (None, 16, 10, 8, 8) O maxpooling3d 2[0][0]
convolution3d 5 (Convolution3D) (None, 32, 10, 8, 8) 13856 dropout 2[0][0]
maxpooling3d 3 (MaxPooling3D) (None, 32, 10, 4, 4) O convolution3d 5[0][0]
dropout 3 (Dropout) (None, 32, 10, 4, 4) O maxpooling3d 3[0][0]
convolution3d 6 (Convolution3D) (None, 64, 10, 4, 4) 55360 dropout 3[0][0]
maxpooling3d 4 (MaxPooling3D) (None, 64, 10, 2, 2) O convolution3d 6[0][0]
dropout 4 (Dropout) (None, 64, 10, 2, 2) O maxpooling3d 4[0][0]
convolution3d 7 (Convolution3D) (None, 96, 10, 2, 2) 73824 dropout 4[0][0]
maxpooling3d 5 (MaxPooling3D) (None, 96, 10, 1, 1) O convolution3d 7[0][0]
dropout 5 (Dropout) (None, 96, 10, 1, 1) O maxpooling3d 5[0][0]
convolution3d 8 (Convolution3D) (None, 128, 10, 1, 1) 36992 dropout 5[0][0]
permute 1 (Permute) (None, 10, 128, 1, 1) O convolution3d 8[0][0]
reshape 2 (Reshape) (None, 10, 128) 0 permute 1[0][0]
timedistributed 1 (TimeDistribute(None, 10, 1024) 132096 reshape 2[0][0]

Total params: 324488
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Model architectures - LSTM

Layer (type) Output Shape Param # Connected to

input_1 (Inputiayer)  (Nome, 5, l024) o
lstm 1 (LSTM) (None, 9, 1024) 8392704 input 1[0][0]

timedistributed 1 (TimeDistribute(None, 9, 1024) 1049600 lstm 1[0][0]

Total params: 9442304

33



